
Difficulty Controllable Generation of Reading Comprehension Questions 
Yifan Gao1, Lidong Bing2, Wang Chen1, Michael R. Lyu1, Irwin King1

1Department of Computer Science and Engineering, The Chinese University of Hong Kong
2R&D Center Singapore, Machine Intelligence Technology, Alibaba DAMO Academy

1{yfgao, wchen, lyu, King}@cse.cuhk.edu.hk 2l.bing@alibaba-inc.com

Difficulty Controllable Question Generation: A New Task Model

Experiment Results

Motivation:

• SQuAD questions have different difficulty levels. Q1 is easy, Q2 is 
hard.

• Can we control the difficulty of generated questions?

Data Preparation

S1 : Oxygen is a chemical element with symbol O and atomic 
number 8. 
A1: 8
Q1: (Easy) What is the atomic number of the element oxygen? 

S2 : The electric guitar is often emphasised, used with distortion 
and other effects, both as a rhythm instrument using repetitive 
riffs with a varying degree of complexity, and as a solo lead 
instrument. 
A2: The electric guitar
Q2: (Hard) What instrument is usually at the center of a hard rock 
sound?

Task Definition:

• Given a sentence, a text fragment (answer) in the sentence, and 
a difficulty level

• To generate a question that is asked about the fragment and 
satisfy the difficulty level

Applications:

• Balance the number of hard questions and easy questions for 
knowledge testing

• Test how a QA system works for questions with diverse difficulty 
levels

• Improve performance of QA systems

• No existing QA dataset has difficulty labels for questions
• For a single sentence and answer pair, we want to generate 

questions with diverse difficulty levels, but SQuAD only has one 
given question for each sentence and answer pair

• No metric to evaluate the difficulty of questions

Question Difficulty is a subjective notion and can be addressed in 
many ways:
• Some stories are inherently difficult to understand
• Questions can be difficult in different ways, such as syntax 

complexity, coreference resolution and elaboration

Challenges

Our Method for Data Preparation：
• Focus on generate SQuAD-like questions with diverse difficulty 

levels
• Two difficulty levels: Easy and Hard
• Develop an automatic labelling protocol
• Study the correlation between automatically labelled difficulty 

with human difficulty

Automatic labelling protocol：
• Employ two reading comprehension systems, R-Net and BiDAF
• A question would be:

• labelled with ‘Easy’ if both R-Net and BiDAF answer it 
correctly 

• labelled with ‘Hard’ if both systems fail to answer it
• The remaining questions are eliminated for suppressing the 

ambiguity
• 44723 easy questions, 31332 hard questions

Human Rating on 100 Easy & 100 Hard Questions：
• 1-3 scale, 3 for the most difficult
• Easy: 1.90 vs. Hard: 2.52

Exploring Proximity Hints:

• If a question has more hints that can help locate the answer 
fragment, it would be easier to answer

• The average distance of those nonstop question words that also 
appear in the input sentence to the answer fragment

• Question Word Proximity Hints
• The distance of nonstop question words are much smaller 

than the sentence words 
• Learn a lookup table to map the distance into a position 

embedding: (𝐩0, 𝐩1, 𝐩2, … 𝐩𝐿)
• Difficulty Level Proximity Hints

• The distance for hard questions is significantly larger than 
that for easy questions

• Explore the information of question difficulty levels

• Easy: (𝐩0
𝑒 , 𝐩1

𝑒 , 𝐩2
𝑒 , … 𝐩𝐿

𝑒), Hard: (𝐩0
ℎ, 𝐩1

ℎ, 𝐩2
ℎ, … 𝐩𝐿

ℎ)

Automatic Evaluation:

• Employ reading comprehension systems to evaluate the 
difficulty of generated questions

• N-gram based similarity: BLEU(B), ROUGE-L(R-L), METEOR(MET)
Difficulty of the Generated Questions:

Controlling Difficulty:

Question Quality:

Human Evaluation:
• Fluency (F) {1,2,3}: grammatical correctness and fluency
• Difficulty (D) {1,2,3}: difficulty of generated questions
• Relevance (R) {0,1}: if the question is ask about the answer

Characteristic-rich Encoder:

• Concatenate word emb and position emb: 𝐱 = [𝐰; 𝐩]
• Bidirectional LSTMs encode the sequence
Global Difficulty Control:
• Use style variable to initialize the decoder state: 𝐮0 = [𝐡𝑚; 𝐝]
Decoder with Attention & Copy


