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Difficulty Controllable Question Generation: A New Task Model

Experiment Results

Motivation:

• SQuAD questions have different difficulty levels. Q1 is easy, Q2 is 
hard.

• Can we control the difficulty of generated questions?

Data Preparation

S1 : Oxygen is a chemical element with symbol O and atomic 
number 8. 
A1: 8
Q1: (Easy) What is the atomic number of the element oxygen? 

S2 : The electric guitar is often emphasised, used with distortion 
and other effects, both as a rhythm instrument using repetitive 
riffs with a varying degree of complexity, and as a solo lead 
instrument. 
A2: The electric guitar
Q2: (Hard) What instrument is usually at the center of a hard rock 
sound?

Task Definition:

• Given a sentence, a text fragment (answer) in the sentence, and 
a difficulty level

• To generate a question that is asked about the fragment and 
satisfy the difficulty level

Applications:

• Balance the number of hard questions and easy questions for 
knowledge testing

• Test how a QA system works for questions with diverse difficulty 
levels

• Improve performance of QA systems

• No existing QA dataset has difficulty labels for questions
• For a single sentence and answer pair, we want to generate 

questions with diverse difficulty levels, but SQuAD only has one 
given question for each sentence and answer pair

• No metric to evaluate the difficulty of questions

Question Difficulty is a subjective notion and can be addressed in 
many ways:
• Some stories are inherently difficult to understand
• Questions can be difficult in different ways, such as syntax 

complexity, coreference resolution and elaboration

Challenges

Our Method for Data Preparation：
• Focus on generate SQuAD-like questions with diverse difficulty 

levels
• Two difficulty levels: Easy and Hard
• Develop an automatic labelling protocol
• Study the correlation between automatically labelled difficulty 

with human difficulty

Automatic labelling protocol：
• Employ two reading comprehension systems, R-Net and BiDAF
• A question would be:

• labelled with ‘Easy’ if both R-Net and BiDAF answer it 
correctly 

• labelled with ‘Hard’ if both systems fail to answer it
• The remaining questions are eliminated for suppressing the 

ambiguity
• 44723 easy questions, 31332 hard questions

Human Rating on 100 Easy & 100 Hard Questions：
• 1-3 scale, 3 for the most difficult
• Easy: 1.90 vs. Hard: 2.52

Exploring Proximity Hints:

• If a question has more hints that can help locate the answer 
fragment, it would be easier to answer

• The average distance of those nonstop question words that also 
appear in the input sentence to the answer fragment

• Question Word Proximity Hints
• The distance of nonstop question words are much smaller 

than the sentence words 
• Learn a lookup table to map the distance into a position 

embedding: (𝐩0, 𝐩1, 𝐩2, … 𝐩𝐿)
• Difficulty Level Proximity Hints

• The distance for hard questions is significantly larger than 
that for easy questions

• Explore the information of question difficulty levels

• Easy: (𝐩0
𝑒 , 𝐩1

𝑒 , 𝐩2
𝑒 , … 𝐩𝐿

𝑒), Hard: (𝐩0
ℎ, 𝐩1

ℎ, 𝐩2
ℎ, … 𝐩𝐿

ℎ)

Automatic Evaluation:

• Employ reading comprehension systems to evaluate the 
difficulty of generated questions

• N-gram based similarity: BLEU(B), ROUGE-L(R-L), METEOR(MET)
Difficulty of the Generated Questions:

Controlling Difficulty:

Question Quality:

Human Evaluation:
• Fluency (F) {1,2,3}: grammatical correctness and fluency
• Difficulty (D) {1,2,3}: difficulty of generated questions
• Relevance (R) {0,1}: if the question is ask about the answer

Characteristic-rich Encoder:

• Concatenate word emb and position emb: 𝐱 = [𝐰; 𝐩]
• Bidirectional LSTMs encode the sequence
Global Difficulty Control:
• Use style variable to initialize the decoder state: 𝐮0 = [𝐡𝑚; 𝐝]
Decoder with Attention & Copy


